Safety of LPG storage
A gas cylinder or tank is a pressure vessel used to store gases at above atmospheric pressure. High-pressure gas cylinders are also called bottles
Materials
For a detailed discussion about the materials for gas cylinders see pressure vessel.
Design codes and application standards along with the cost of materials dictated the choice of steel with no welds for most gas cylinders, treated to be anti corrosive. There have been some newly developed lightweight gas cylinders from stainless steel and composite materials. Due to the very high tensile strength of carbon fiber, these vessels can be very light, but are much more difficult to manufacture
Regulations and cylinder testing
The transportation of high-pressure cylinders is regulated by many governments throughout the world. Various levels of testing are generally required by the governing authority for the country in which it is to be transported. In the United States, this authority is the United States Department of Transportation (DOT). Similarly in the UK, the European transport regulations (ADR) are implemented by the Department for Transport (DfT). For Canada, this authority is Transport Canada (TC). Cylinders may have additional requirements placed on design and or performance from independent testing agencies such as Underwriter's Laboratory (UL). Each manufacturer of high-pressure cylinders is required to have an independent quality agent that will inspect the product for quality and safety.
Within the UK the "competent authority" — the DfT — implements the regulations and appointment of authorised cylinder testers is conducted by UKAS, who make recommendations to the VCA for approval of individual bodies.
There are a variety of tests that may be performed on various cylinders. Some of the most common types of tests are hydrostatic test, burst test, tensile strength, Charpy impact test and pressure cycling.
During the manufacturing process, vital information is usually stamped or permanently marked on the cylinder. This information usually includes the type of cylinder, the working or service pressure, the serial number, date of manufacture, the manufacture's registered code and sometimes the test pressure. Other information may also be stamped depending on the regulation requirements.
High-pressure cylinders that are used multiple times — as most are — can be hydrostatically or ultrasonically tested and visually examined every few years.[5] In the United States, hydrostatic/ultrasonic testing is required either every five years or every ten years, depending on cylinder and its service. Helium gas cylinders have the highest pressures possible when full, around 1000 atmospheres
Safety and standards
It would be safer to have cylinders individually achored in a cool place,
rather than chained in a cluster in the sun, as seen here.
Because the contents are under pressure and are sometimes hazardous materials, handling bottled gases are regulated. Regulations may include chaining bottles to prevent falling and damaging the valve, proper ventilation to prevent injury or death in case of leaks and signage to indicate the potential hazards If a compressed gas cylinder tips over, causing the valve block to be sheared off, the rapid release of high-pressure gas may cause the cylinder to be violently accelerated, potentially causing property damage, injury, or death. To prevent this, cylinders are normally secured to a fixed object or transport cart with a strap or chain.
In a fire, the pressure in a gas cylinder rises in direct proportion to its temperature. If the internal pressure exceeds the mechanical limitations of the cylinder and there are no means to safely vent the pressurized gas to the atmosphere, the vessel will fail mechanically. If the vessel contents are flammable, this event may result in a "fireball". If the cylinder's contents are liquid, but become a gas at ambient conditions, this is commonly referred to as a boiling liquid expanding vapour explosion (BLEVE).
Medical gas cylinders in the UK and some other countries have a fusible plug of Wood's metal in the valve block between the valve seat and the cylinder. This plug melts at a comparatively low temperature (70 °C) and allows the contents of the cylinder to escape to the surroundings before the cylinder is significantly weakened by the heat, lessening the risk of explosion.
More common pressure relief devices are a simple burst disc installed in the base of the valve between the cylinder and the valve seat. A burst disc is a small metal gasket engineered to rupture at a pre-determined pressure. Some burst discs are backed with a low-melting-point metal, so that the valve must be exposed to excessive heat before the burst disc can rupture.
The Compressed Gas Association publishes a number of booklets and pamphlets on safe handling and use of bottled gases
Comments