Clean Environment by Premium Efficiency


An electric motor converts electrical energy into mechanical motion. The reverse task, that of converting mechanical motion into electrical energy, is accomplished by a generator or dynamo. In many cases the two devices differ only in their application and minor construction details, and some applications use a single device to fill both roles. For example, traction motors used on locomotives often perform both tasks if the locomotive is equipped with dynamic brakes.

As part of a concerted effort worldwide to reduce energy consumption, CO2 emissions and the impact of industrial operations on the environment, various regulatory authorities in many countries have introduced, or are planning, legislation to encourage the manufacture and use of higher efficiency motors. This article looks at the development of the premium efficiency standard (IE3) and premium efficiency motors (PEMs) and associated environmental, legal and energy-related topics

Premium efficiency electrical motors


The term “Premium efficiency” as discussed here relates to a class of motor efficiency. It is thought necessary to introduce this term associated with motors because of forthcoming legislation in the EU, USA and other countries regarding the future mandatory use of premium-efficiency squirrel cage induction type motors in defined equipment.

Reducing energy consumption and CO2 emissions


Several statements have been made regarding motor use and the advantages of using premium-efficiency or higher efficiency motors. These include:

Based on U.S. Department of Energy data, it is estimated that the National Electrical Manufacturers Association (NEMA) premium-efficiency motor program would save 5.8 terawatts of electricity and prevent the release of nearly 80 million metric tons of carbon into the atmosphere over the next ten years. This is equivalent to keeping 16 million cars off the road.

Roughly 30 million new electric motors are sold each year for industrial purposes. Some 300 million motors are in use in industry, infrastructure and large buildings. These electric motors are responsible for 40% of global electricity used to drive pumps, fans, compressors and other mechanical traction equipment. Motor technology has evolved over the last few decades. Superior so-called "premium" products are now available, ready to change the market toward energy efficiency and to contribute in lowering greenhouse gas emissions worldwide.

With using best practice energy efficiency of electrical motors can be improved by 20% to 30% on average. Most improvements have a pay back time of 1 to below 3 years. This in addition means a big potential impact on reduction of global greenhouse gas emissions.

Electric motor systems consume large amounts of electrical energy and can provide an opportunity for significant energy savings. Energy represents more than 97 percent of total motor operating costs over the motor’s lifetime. However, the purchase of a new motor often tends to be driven by the price, not the electricity it will consume. Even a small improvement in efficiency could result in significant energy and cost savings. Investing a little more money upfront for a more efficient motor is often paid back in energy savings. Improving energy efficiency reduces greenhouse gas emissions that contribute to climate change

Premium efficiency motor programs in USA


On December 19, 2007, President Bush signed the Energy Independence and Security Act of 2007 (EISA) into law (Public Law 140-110). The National Electrical Manufacturers Association (NEMA) actively participated in crafting major provisions on EISA. A critical provision that NEMA focused on was increased motor efficiency levels. The Motor Generator section of NEMA joined forces with the American Council for an Energy Efficient Economy to draft and recommend new motor efficiency regulations covering both general purpose and some categories of definite and special purpose electrical motors.

The Motor and Generator Section of NEMA established the NEMA Premium program for four main reasons:

  • Electric motors have a significant impact on the total energy operating cost for industrial, institutional and commercial buildings.
  • Electric motors vary in terms of energy efficiency. The NEMA Premium program will assist purchasers identify higher efficient motors that will save them money and improve system reliability.
  • NEMA Premium labeled electric motors will assist users to optimize motor systems efficiency in light of power supply and utility deregulation issues.
  • NEMA Premium motors and optimized systems will reduce electrical consumption thereby reducing pollution associated with electrical power generation.



A summary of EISA standards for motors:


The table below shows the IEC 60034-30 (2008) efficiency classes and comparable efficiency levels.

Efficiency Levels
Comparison
IE1
Standard efficiency
IE2
High efficiency
For 50 Hz considerably higher than EFF2 of CEMEP and identical to the U.S. EPAct for 60 Hz
IE3
Premium efficiency
New efficiency class in Europe for 50 Hz, higher than EFF1 on CEMEP and with some exceptions identical to NEMA Premium in the United States for 60 Hz.


Comments

Mock drill

My Energy Sector

My Solar Integration

My Emergency Evacuation plan