My Energy Efficient Transformer - Way 1


A transformer is an electrical device that transfers electrical energy between two or more circuits through electromagnetic induction. A varying current in one coil of the transformer produces a varying magnetic field, which in turn induces a voltage in a second coil. Power can be transferred between the two coils through the magnetic field, without a metallic connection between the two circuits. Faraday's law of induction discovered in 1831 described this effect. Transformers are used to increase or decrease the alternating voltages in electric power applications.


Since the invention of the first constant-potential transformer in 1885, transformers have become essential for the transmission, distribution, and utilization of alternating current electrical energy. A wide range of transformer designs is encountered in electronic and electric power applications. Transformers range in size from RF transformers less than a cubic centimeter in volume to units interconnecting the power grid weighing hundreds of tons.


In a typical power distribution grid, electric transformer power loss typically contributes about 40-50% of the total transmission and distribution loss. Energy efficient transformers are therefore an important means to reduce transmission and distribution loss. With the improvement of electrical steel (silicon steel) properties, the losses of a transformer in 2010 can be half that of a similar transformer in the 1970s. With new magnetic materials, it is possible to achieve even higher efficiency. The amorphous metal transformer is a modern example

An amorphous metal transformer (AMT) is a type of energy efficient transformer found on electric grids. The magnetic core of this transformer is made with a ferromagnetic amorphous metal. The typical material (Metglas) is an alloy of iron with boron, silicon, and phosphorus in the form of thin (e.g. 25 µm) foils. These materials have high magnetic susceptibility, very low coercivity and high electrical resistance. The high resistance and thin foils lead to low losses by eddy currents when subjected to alternating magnetic fields. On the downside amorphous alloys have a lower saturation induction and often a higher magnetostriction compared to conventional crystalline iron-silicon electrical steel

Core loss and copper loss


In a transformer the no load loss is dominated by the core loss. With an amorphous core, this can be 70–80% lower than with traditional crystalline materials. The loss under heavy load is dominated by the resistance of the copper windings and thus called copper loss. Here the lower saturation magnetization of amorphous cores tend to result in a lower efficiency at full load. Using more copper and core material it is possible to compensate for this. So high efficiency AMTs can be more efficient at low and high load, though at a larger size. The more expensive amorphous core material, the more difficult handling and the need for more copper windings make an AMT more expensive than a traditional transformer.

Applications


The main application of AMTs are the grid distribution transformers rated at about 50–1000 kVA. These transformers typically run 24 hours a day and at a low load factor (average load divided by nominal load). The no load loss of these transforms makes up a significant part of the loss of the whole distribution net. Amorphous iron is also used in specialized electric motors that operate at high frequencies of perhaps 350 Hz or more.

Advantages and disadvantages


More efficient transformers lead to a reduction of generation requirement and, when using electric power generated from fossil fuels, less CO2 emissions. This technology has been widely adopted by large developing countries such as China and India where labour cost is low. AMT are in fact more labour-intensive than conventional distribution transformer, a reason that explain a very low adoption in the comparable (by size) European market. These two countries can potentially save 25–30 TWh electricity annually, eliminate 6-8 GW generation investment , and reduce 20–30 million tons of CO2 emission by fully utilizing this technology

Use in China


As one of the major programs to improve grid efficiency, China has started to install amorphous metal transformers in a number of energy intensive provinces since 2005. Over 20,000 MVA of such transformers are installed every year. This movement has also led to the successful development and production of amorphous metal ribbon in China


Comments

Mock drill

My Energy Sector

My Solar Integration

My Emergency Evacuation plan